

Chandrayaan-3, India's third lunar exploration mission is ready to take off in fourth operational mission (M4) of LVM3 launcher, ISRO is crossing new frontiers by demonstrating soft landing on lunar surface by its lunar module and demonstrate roving on the lunar terrain. It is expected to be supportive to ISRO's future interplanetary missions.

Additionally the deployment of rover and in-situ scientific experiment will scale new heights in lunar expeditions by deploying Rover. Yes, ISRO is bringing the Moon closer to us.

Propulsion Module

Chandrayaan-3 consists of an indigenous propulsion module, lander module, and a rover with an objective of developing and demonstrating new technologies required for inter-planetary missions.

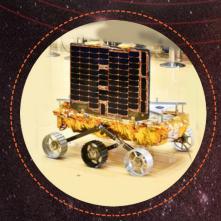
The propulsion module will carry the lander and rover from injection orbit to till 100 km lunar orbit. It also carries a Spectro-polarimetry of Habitable Planetary Earth (SHAPE) payload to study the spectral and polarimetric measurements of earth from the lunar orbit.

The main function of Propulsion Module is to carry the LM from launch vehicle injection orbit to till Lander separation.

Major Specifications of Propulsion Module

SI.No	Parameter	Specifications
1.	Lunar Polar Orbit	From 170 x 36500 km to lunar polar orbit
2.	Mission life	Carrying Lander Module & Rover upto ~100 x 100 km launch injection. Subsequently, operation of experimental payload for a period of 3 to 6 months.
3.	Structure	Modified version of I-3 K
4.	Dry Mass	448.62 kg (including pressurant)
5	Propellant Mass	1696.39 kg
6.	Total PM Mass	2145.01 kg
7.	Power Generation	738 W, Summer solistices and with bias
8.	Communication	S-Band Transponder (TTC) – with IDSN
9.	Attitude Sensors	CASS, IRAP, Micro star sensor
10.	Propulsion System	Bi-Propellant Propulsion System (MMH + MON3)

Major Specifications of Lander


Mission life : 1 Lunar day (14 Earth days)
Mass : 1749.86 kg including Rover

Power : 738 W (Winter solstice)

Payloads : 3

Dimensions (mm³): 2000 x 2000 x 1166

Communication : ISDN, Ch-2 Orbiter, Rover Landing site : 69.367621 S, 32.348126 E

Major Specifications of Rover

Mission Life : 1 Lunar day

Mass : 26 kg Power : 50 W

Payloads : 2

Dimensions (mm³) : $917 \times 750 \times 397$

Communication : Lander

Lander Payloads

RAMBHA-LP Langmuir Probe

To measure the near surface plasma (ions and electrons) density and its changes with time.

ChaSTE

Chandra's Surface Thermophysical Experiment

To carry out the measurements of thermal properties of lunar surface near polar region.

ILSA

Instrument for Lunar Seismic Activity

To measure seismicity around the landing site and delineating the structure of the lunar crust and mantle.

Rover Payloads

APXS

Alpha Particle X-Ray Spectrometer

To derive the chemical composition and infer mineralogical composition to further enhance our understanding of lunar surface.

LIBS

Laser Induced Breakdown Spectroscope

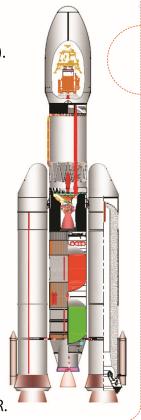
To determine the elemental composition (Mg, Al, Si, K, Ca,Ti, Fe) of lunar soil and rocks around the lunar landing site.

Propulsion Module Payload

SHAPE

Spectro-polarimetry of HAbitable Planet Earth

An experimental payload to study the spectro-polarimetric signatures of the habitable planet Earth in the near-infrared (NIR) wavelength range (1-1.7 μ m).

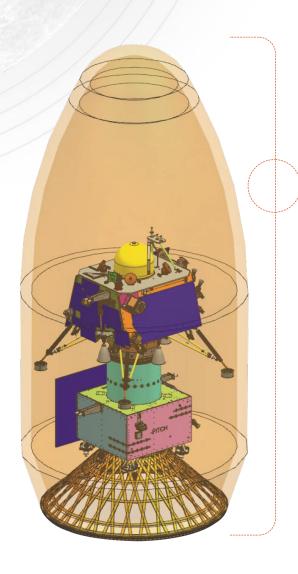

LVM3 is the operational heavy lift launch vehicle of ISRO and has a spectacular pedigree of completing 6 consecutive successful missions. This is the 4th operational flight of LVM3, aims to launch the Chandrayaan-3 spacecraft to Geo Transfer Orbit (GTO).

LVM3 has proved its versatility to undertake most complex missions like:

- Injecting multi-satellites
- Mission planning to ensure safe relative distance among separated satellites through re-orientation and velocity addition maneuvers.
- Multi orbit (LEO, MEO, GEO) and execute interplanetary missions.
- India's largest and heaviest launch vehicle ferrying indian and international customer satellites.

LVM3-M4 will be launched from the Second Launch Pad (SLP), SDSC, SHAR.

LVM3-M4 Vehicle Configuration (2S200+L110+C25+PLF)


Payload Mass: 3895 kg

LVM3-M4 Vehicle Characteristics

Height	43.5 m			
Lift-off Mass	642 t			
Propulsion Stages				
Strap-on Motors	2 x S200			
	(Solid)			
Core Stage	L110 (Liquid)			
Upper Stage	C25 (Cryo)			
Payload Fairing	5 m OPLF			

Payload Accommodation

LVM3-M4 Mission Specifications

GTO Apogee	36500 ± 500 km	
GTO Perigee	170 ± 3.5 km	
Inclination	21.3°	
Argument of Perigee	178 ± 0.2°	
Launch Pad	SLP	
Launch Azimuth	107°	

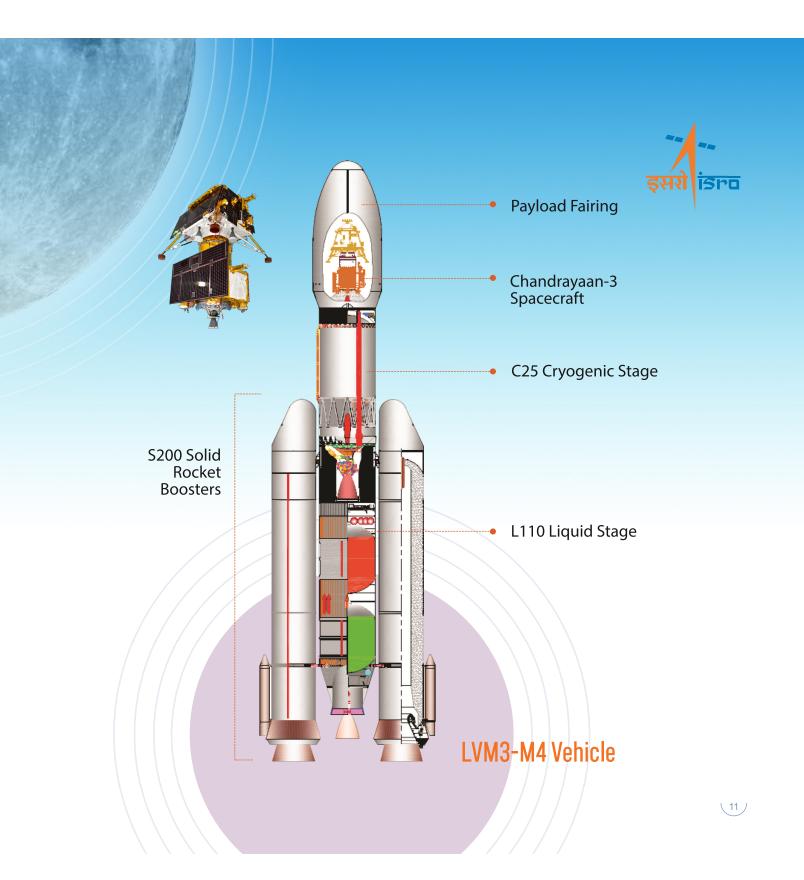
LVM3-M4 Stages at a Glance

Stages	Strap-Ons (2 x S200)	Core Stage (L110)	Upper Stage (C25)
Length (m)	26.22	21.4	13.5
Diameter (m)	3.2	4.0	4.0
Propellant Type	Solid (HTPB)	Liquid (UH25 + N_2O_4)	Cryo (LH ₂ & LOX)
Propellant Mass (t)	204.5 (each)	115.8	28.6

......

Nominal Flight Sequence

Satellite Separation


Event	Flight Time (s)	Altitude (km)	Inertial Velocity (km/s)
2xS200 Ignition	0.00	0.024	0.452
L110 Ignition	108.10	44.668	1.788
2xS200 Separation	127.00	62.171	1.969
PLF Separation	194.96	114.805	2.560
L110 Separation	305.56	175.352	4.623
C25 Ignition	307.96	176.573	4.621
C25 Shut-off	954.42	174.695	10.242
Satellite Separation	969.42	179.192	10.269

S200 Ignition

L110 Ignition

10

Integration Activities of LVM3-M4

Capacity Building and Public Outreach (CBPO)

Indian Space Research Organisation

Department of Space, Government of India Antariksh Bhavan, New BEL Road, Bengaluru-560094, India Telephone: +91 80 22172119

www.isro.gov.in

www.facebook.com/ISRO/

@isro

@isroofficial5866/featured